Disclosure of data analytics has important scientific and commercial justifications. However, no data shall be disclosed without a diligent investigation of risks posed for privacy of subjects. Do data analysts have the right tools to perform such investigations? Privug is a tool-supported method to explore information leakage properties of programs producing the analytics to be disclosed. It uses classical off-the-shelf tools for Bayesian programming, reinterpreting a regular program probabilistically. This in turn allows information-theoretic analysis of program behavior. For privacy researchers, the method provides a fast and lightweight way to experiment with privacy protection measures and mechanisms. We demonstrate that Privug is accurate, scalable, and applicable. We show how to use it to explore parameters of differential privacy, and how to benefit from a range of leakage estimators.
翻译:数据分析的披露具有重要的科学和商业理由。然而,不认真调查对主体隐私构成的风险,则不得披露任何数据。数据分析员是否拥有进行此类调查的适当工具? Privug是一种工具支持的方法,用于探索制作分析器的程序中的信息泄漏特性。它使用典型的现成工具用于Bayesian编程,重新解释常规程序概率。这反过来又允许对程序行为进行信息理论分析。对于隐私研究人员来说,这种方法提供了快速和轻便的隐私保护措施和机制实验方法。我们证明Privug是准确、可缩放和适用的。我们展示了如何利用它探索不同隐私参数,以及如何从一系列渗漏估计器中受益。