We present a novel projection-based model reduction framework for parametric linear time-invariant systems that allows interpolating the transfer function at a given frequency point along parameter-dependent curves as opposed to the standard approach where transfer function interpolation is achieved for a discrete set of parameter and frequency samples. We accomplish this goal by using parameter-dependent projection spaces. Our main result shows that for holomorphic system matrices, the corresponding interpolatory projection spaces are also holomorphic. The coefficients of the power series representation of the projection spaces can be computed iteratively using standard methods. We illustrate the analysis on three numerical examples.
翻译:我们为参数直线时间变异系统提出了一个新的基于预测的模型减少框架,允许在某一频率点上沿依赖参数的曲线对转移功能进行内插,而采用标准办法,即对一组离散的参数和频率样品实现转移函数内插。我们通过使用依赖参数的预测空间实现这一目标。我们的主要结果表明,对于星系矩阵,相应的内插预测空间也是具有轮廓性的。预测空间的功率序列系数可以用标准方法迭代计算。我们用三个数字例子来说明分析。