We consider the processing of statistical samples $X\sim P_\theta$ by a channel $p(y|x)$, and characterize how the statistical information from the samples for estimating the parameter $\theta\in\mathbb{R}^d$ can scale with the mutual information or capacity of the channel. We show that if the statistical model has a sub-Gaussian score function, then the trace of the Fisher information matrix for estimating $\theta$ from $Y$ can scale at most linearly with the mutual information between $X$ and $Y$. We apply this result to obtain minimax lower bounds in distributed statistical estimation problems, and obtain a tight preconstant for Gaussian mean estimation. We then show how our Fisher information bound can also imply mutual information or Jensen-Shannon divergence based distributed strong data processing inequalities.
翻译:我们考虑用美元(y)x(y)x(y)x(x)美元处理统计样本,并分析用于估算参数$(theta\in\mathbb{R)d$的样本统计资料如何能与该频道的相互信息或能力相适应。我们表明,如果统计模型具有亚高加索分数函数,那么用于估算美元(Y)美元(Y)的渔业信息矩阵的踪迹最多可以与X美元和美元(Y)之间的相互信息相对应。我们采用这一结果是为了在分布式统计估算问题中获得最小的下限,并获得高斯平均估算的紧凑预设值。我们然后表明,我们的渔业信息约束还意味着相互信息,或者基于分布在数据处理方面的强烈不平等。