We consider the processing of statistical samples $X\sim P_\theta$ by a channel $p(y|x)$, and characterize how the statistical information from the samples for estimating the parameter $\theta\in\mathbb{R}^d$ can scale with the mutual information or capacity of the channel. We show that if the statistical model has a sub-Gaussian score function, then the trace of the Fisher information matrix for estimating $\theta$ from $Y$ can scale at most linearly with the mutual information between $X$ and $Y$. We apply this result to obtain minimax lower bounds in distributed statistical estimation problems, and obtain a tight preconstant for Gaussian mean estimation. We then show how our Fisher information bound can also imply mutual information or Jensen-Shannon divergence based distributed strong data processing inequalities.


翻译:我们考虑用美元(y)x(y)x(y)x(x)美元处理统计样本,并分析用于估算参数$(theta\in\mathbb{R)d$的样本统计资料如何能与该频道的相互信息或能力相适应。我们表明,如果统计模型具有亚高加索分数函数,那么用于估算美元(Y)美元(Y)的渔业信息矩阵的踪迹最多可以与X美元和美元(Y)之间的相互信息相对应。我们采用这一结果是为了在分布式统计估算问题中获得最小的下限,并获得高斯平均估算的紧凑预设值。我们然后表明,我们的渔业信息约束还意味着相互信息,或者基于分布在数据处理方面的强烈不平等。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
78+阅读 · 2021年1月30日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
42+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
91+阅读 · 2020年7月4日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2019年3月1日
VIP会员
相关VIP内容
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员