Information geometry is the study of statistical models from a Riemannian geometric point of view. The Fisher information matrix plays the role of a Riemannian metric in this framework. This tool helps us obtain Cram\'{e}r-Rao lower bound (CRLB). This chapter summarizes the recent results which extend this framework to more general Cram\'{e}r-Rao inequalities. We apply Eguchi's theory to a generalized form of Czsisz\'ar $f$-divergence to obtain a Riemannian metric that, at once, is used to obtain deterministic CRLB, Bayesian CRLB, and their generalizations.


翻译:信息几何学是从里曼语几何角度对统计模型进行研究的。 渔业信息矩阵在这个框架中扮演了里曼语测量仪的作用。 这个工具帮助我们获得Cram\\ {e}r- Rao 较低的约束( CRLB) 。 本章总结了将这一框架扩大到更普遍的Cram\ {e}r- Rao不平等的最新结果。 我们将Eguchi的理论应用到一种普遍形式的Czsisz\ ar $f$- divegence 上, 以获得一种里曼语测量仪, 立即用于获得确定性的 CRLB、 Bayesian CRLB 及其概括性。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
专知会员服务
62+阅读 · 2020年3月4日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
GeomCA: Geometric Evaluation of Data Representations
Arxiv
11+阅读 · 2021年5月26日
Arxiv
5+阅读 · 2018年5月31日
VIP会员
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员