We provide the first $\mathit{constant}$-$\mathit{round}$ construction of post-quantum non-malleable commitments under the minimal assumption that $\mathit{post}$-$\mathit{quantum}$ $\mathit{one}$-$\mathit{way}$ $\mathit{functions}$ exist. We achieve the standard notion of non-malleability with respect to commitments. Prior constructions required $\Omega(\log^*\lambda)$ rounds under the same assumption. We achieve our results through a new technique for constant-round non-malleable commitments which is easier to use in the post-quantum setting. The technique also yields an almost elementary proof of security for constant-round non-malleable commitments in the classical setting, which may be of independent interest. When combined with existing work, our results yield the first constant-round quantum-secure multiparty computation for both classical and quantum functionalities $\mathit{in}$ $\mathit{the}$ $\mathit{plain}$ $\mathit{model}$, under the $\mathit{polynomial}$ hardness of quantum fully-homomorphic encryption and quantum learning with errors.
翻译:我们提供了第一个在最小假设下,即存在后量子单向函数的条件下,实现常数轮的后量子非可塑承诺的构建。我们实现了就承诺而言的标准非可塑性。之前的构建在同一假设下需要$\Omega(\log^*λ)$轮。我们通过一种新的技术,实现了常轮非可塑承诺,这种技术在后量子环境中使用更加容易。该技术还可产生基本的、针对经典环境的常数轮非可塑承诺的安全证明,这可能是独立的。当与现有的工作结合时,我们的结果在明文模型下实现了第一个针对经典和量子功能的常数轮量子安全多方计算,这是在量子全同态加密和含噪学习下多项式难度的情况下实现的。