Familywise error rate (FWER) has been one of the most prominent frequentist approaches in simultaneous inference for decades, and stepwise procedures represent the most successful and ingenious attack on FWER control. A recent article proved that the FWER for the Bonferroni method asymptotically (i.e., when the number of hypotheses goes to infinity) goes to zero under any positively equicorrelated multivariate normal distribution. However, similar results for the limiting behaviors of FWER of general stepwise procedures are nonexistent. The present work addresses this problem by studying the asymptotic behavior of the FWER of step-down and step-up procedures under equicorrelated and general normality. Specifically, we show that the FWER of any step-down procedure (e.g., Holm's method) goes to zero asymptotically for a broad class of correlated normal distributions. We also establish similar results on limiting FWER for other commonly used multiple testing procedures.
翻译:几十年来,家庭误差率(FWER)一直是同时推论中最突出的常见方法之一,而渐进式程序则是对FWER控制最成功和最巧妙的攻击。最近一篇文章证明,对于Bonferroni 方法的FWER无规律性地(即当假设数量达到无限)在任何正等相关多变正常分布下都达到零(即当假设数量达到无限)。然而,对于FWER一般渐进式程序的限制行为,不存在类似的结果。目前的工作通过研究FWER在与衡平相关和一般正常情况下的逐步降级和递升程序方面无规律的行为来解决这个问题。具体地说,我们表明,任何逐步降级程序(例如Holm 方法)的FWER对于一个大类相关正常分布的类似结果,在限制其他常用的多重测试程序方面也有类似的结果。