Linear mixed models (LMMs), which typically assume normality for both the random effects and error terms, are a popular class of methods for analyzing longitudinal and clustered data. However, such models can be sensitive to outliers, and this can lead to poor statistical results (e.g., biased inference on model parameters and inaccurate prediction of random effects) if the data are contaminated. We propose a new approach to robust estimation and inference for LMMs using a hierarchical gamma divergence, which offers an automated, data-driven approach to downweight the effects of outliers occurring in both the error, and the random effects, using normalized powered density weights. For estimation and inference, we develop a computationally scalable minorization-maximization algorithm for the resulting objective function, along with a clustered bootstrap method for uncertainty quantification and a Hyvarinen score criterion for selecting a tuning parameter controlling the degree of robustness. When the genuine and contamination mixed effects distributions are sufficiently separated, then under suitable regularity conditions assuming the number of clusters tends to infinity, we show the resulting robust estimates can be asymptotically controlled even under a heavy level of (covariate-dependent) contamination. Simulation studies demonstrate hierarchical gamma divergence consistently outperforms several currently available methods for robustifying LMMs, under a wide range of scenarios of outlier generation at both the response and random effects levels. We illustrate the proposed method using data from a multi-center AIDS cohort study, where the use of a robust LMMs using hierarchical gamma divergence approach produces noticeably different results compared to methods that do not adequately adjust for potential outlier contamination.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
30+阅读 · 2022年9月10日
Arxiv
20+阅读 · 2018年1月17日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员