Molecular fingerprints are widely used for predicting chemical properties, and selecting appropriate fingerprints is important. We generate new fingerprints based on the assumption that a performance of prediction using a more effective fingerprint is better. We generate effective interaction fingerprints that are the product of multiple base fingerprints. It is difficult to evaluate all combinations of interaction fingerprints because of computational limitations. Against this problem, we transform a problem of searching more effective interaction fingerprints into a quadratic unconstrained binary optimization problem. In this study, we found effective interaction fingerprints using QM9 dataset.
翻译:分子指纹被广泛应用于预测化学性质,并且选择合适的指纹非常重要。我们基于一种假设,即使用更有效的指纹进行预测的性能更好,生成新的指纹。我们生成了有效的相互作用指纹,它们是多个基本指纹的乘积。由于计算限制,评估所有相互作用指纹的组合是困难的。解决这个问题,我们将搜索更有效的相互作用指纹的问题转化为一个二次无约束二元优化问题。在这项研究中,我们使用QM9数据集找到了有效的相互作用指纹。