Solutions of partial differential equations can often be written as surface integrals having a kernel related to a singular fundamental solution. Special methods are needed to evaluate the integral accurately at points on or near the surface. Here we derive formulas to regularize the integrals with high accuracy, using analysis from Beale and Tlupova (Adv. Comput. Math., 2024), so that a standard quadrature can be used without special care near the singularity. We treat single or double layer integrals for harmonic functions or for Stokes flow. The nearly singular case, evaluation at points close to the surface, can be needed when surfaces are close to each other, or to find values at grid points near a surface. We derive formulas for regularized kernels with error $O(\delta^p)$ where $\delta$ is the smoothing radius and $p = 3$, $5$, $7$. With spacing $h$ in the quadrature, we choose $\delta = \kappa h^q$ with $q<1$ so that the discretization error is controlled as $h \to 0$. We see the predicted order of convergence $O(h^{pq})$ in various examples. Values at all grid points can be obtained from those near the surface in an efficient manner suggested in A. Mayo (SIAM J. Statist. Comput., 1985). With this technique we obtain high order accurate grid values for a harmonic function determined by interfacial conditions and for the pressure and velocity in Stokes flow around a translating spheroid.
翻译:暂无翻译