In this work, we introduce a novel local autoregressive translation (LAT) mechanism into non-autoregressive translation (NAT) models so as to capture local dependencies among tar-get outputs. Specifically, for each target decoding position, instead of only one token, we predict a short sequence of tokens in an autoregressive way. We further design an efficient merging algorithm to align and merge the out-put pieces into one final output sequence. We integrate LAT into the conditional masked language model (CMLM; Ghazvininejad et al.,2019) and similarly adopt iterative decoding. Empirical results on five translation tasks show that compared with CMLM, our method achieves comparable or better performance with fewer decoding iterations, bringing a 2.5xspeedup. Further analysis indicates that our method reduces repeated translations and performs better at longer sentences.
翻译:在这项工作中,我们引入了一个全新的本地自动递减翻译机制(LAT)机制,将其引入非自动递减翻译模式(NAT),以便捕捉到焦油提成产出之间的当地依赖性。具体地说,对于每个目标解码位置,我们用自动递减方式预测一个简短的代号序列。我们进一步设计一个高效的合并算法,将产出成一个最终产出序列。我们把LAT纳入有条件的隐蔽语言模式(CMLM;Ghazvininejad等人,2019年),并同样采用迭代解码模式。 五项翻译任务的经验性结果表明,与CMLM相比,我们的方法能够以较少解码的代号实现相似或更好的业绩,带来2.5x速度。进一步的分析表明,我们的方法减少了重复的翻译,并在较长的句子上表现更好。