Neural machine translation (NMT) has been a new paradigm in machine translation, and the attention mechanism has become the dominant approach with the state-of-the-art records in many language pairs. While there are variants of the attention mechanism, all of them use only temporal attention where one scalar value is assigned to one context vector corresponding to a source word. In this paper, we propose a fine-grained (or 2D) attention mechanism where each dimension of a context vector will receive a separate attention score. In experiments with the task of En-De and En-Fi translation, the fine-grained attention method improves the translation quality in terms of BLEU score. In addition, our alignment analysis reveals how the fine-grained attention mechanism exploits the internal structure of context vectors.
翻译:神经机器翻译(NMT)是机器翻译的一个新范例,关注机制已成为许多语文配对中最新记录的主要方法。 虽然关注机制有各种变体, 但所有这种机制都只使用时间性关注, 对应一个源词对应的上下文矢量的计算值。 在本文中, 我们建议一个细微的( 或 2D) 关注机制, 使上下文矢量的每个维度都得到单独的关注分。 在En- De 和 En-Fi 翻译任务实验中, 细微关注方法提高了BLEU 评分的翻译质量。 此外, 我们的调整分析还揭示了细微关注机制如何利用上下文矢量的内部结构 。