Recent studies on the memorization effects of deep neural networks on noisy labels show that the networks first fit the correctly-labeled training samples before memorizing the mislabeled samples. Motivated by this early-learning phenomenon, we propose a novel method to prevent memorization of the mislabeled samples. Unlike the existing approaches which use the model output to identify or ignore the mislabeled samples, we introduce an indicator branch to the original model and enable the model to produce a confidence value for each sample. The confidence values are incorporated in our loss function which is learned to assign large confidence values to correctly-labeled samples and small confidence values to mislabeled samples. We also propose an auxiliary regularization term to further improve the robustness of the model. To improve the performance, we gradually correct the noisy labels with a well-designed target estimation strategy. We provide the theoretical analysis and conduct the experiments on synthetic and real-world datasets, demonstrating that our approach achieves comparable results to the state-of-the-art methods.
翻译:最近关于深神经网络对噪音标签的记忆效应的研究显示,这些网络首先适合正确标签的培训样本,然后才对标签错误的样本进行记忆。受这种早期学习现象的启发,我们提出了一个防止误标签样本的记忆化的新方法。与使用模型输出来识别或忽略误标签样本的现有方法不同,我们为原始模型引入了一个指标分支,并使模型能够产生每个样本的信任值。信任值被纳入了我们的损失函数,学会给正确标签错误的样本分配大的信任值,给错误标签的样本分配小信任值。我们还提出了一个辅助性规范化术语,以进一步提高模型的稳健性。为了改进性能,我们逐渐用精心设计的目标估计战略纠正噪音标签。我们提供理论分析,并对合成和真实世界数据集进行实验,表明我们的方法取得了与最新方法相似的结果。