Different from conventional image matting, which either requires user-defined scribbles/trimap to extract a specific foreground object or directly extracts all the foreground objects in the image indiscriminately, we introduce a new task named Referring Image Matting (RIM) in this paper. RIM aims to extract the meticulous alpha matte of the specific object that best matches the given natural language description, thus enabling a more natural and simpler instruction for image matting. First, we establish a large-scale challenging dataset RefMatte by designing a comprehensive image composition and expression generation engine to automatically produce high-quality images along with diverse text attributes based on public datasets. RefMatte consists of 230 object categories, 47,500 images, 118,749 expression-region entities, and 474,996 expressions. Additionally, we construct a real-world test set with 100 high-resolution natural images and manually annotate complex phrases to evaluate the out-of-domain generalization abilities of RIM methods. Furthermore, we present a novel baseline method CLIPMat for RIM, including a context-embedded prompt, a text-driven semantic pop-up, and a multi-level details extractor. Extensive experiments on RefMatte in both keyword and expression settings validate the superiority of CLIPMat over representative methods. We hope this work could provide novel insights into image matting and encourage more follow-up studies. The dataset, code, and models will be made public at https://github.com/JizhiziLi/RIM.


翻译:常规图像交配与常规图像交配不同,前者需要用户定义的拼图/trimap 来提取特定前景对象,或直接在图像中不加区别地提取所有前景对象,我们在本文中引入了一个新的任务,名为 参考图像交配( RIM ) 。 RIM 旨在提取与给定自然语言描述最匹配的特定对象的精细字母阿尔法配方, 从而为图像交配提供一个更自然和简单的指令。 首先, 我们通过设计一个全面的图像集成和表达生成引擎来自动生成高质量的图像以及基于公共数据集的不同文本属性。 RefMAT 由230个对象类别、 47 500个图像、 118 749个表达区域实体和 474 996 表达方式组成。 此外, 我们用100个高分辨率的自然图像来构建一个真实世界测试集, 手动说明图像配对 RIM 方法的外向外概括化能力。 此外,我们为 RIM 设计了一个新型的 CLIM 基准方法, 包括一个背景化的图像化模型, 快速化的图像化模型, 和多版本的图像化的图像化的图像级的图像级的图像级的图像化LMMTI.

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
15+阅读 · 2021年7月14日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Arxiv
11+阅读 · 2018年5月13日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员