In vision and linguistics; the main input modalities are facial expressions, speech patterns, and the words uttered. The issue with analysis of any one mode of expression (Visual, Verbal or Vocal) is that lot of contextual information can get lost. This asks researchers to inspect multiple modalities to get a thorough understanding of the cross-modal dependencies and temporal context of the situation to analyze the expression. This work attempts at preserving the long-range dependencies within and across different modalities, which would be bottle-necked by the use of recurrent networks and adds the concept of delta-attention to focus on local differences per modality to capture the idiosyncrasy of different people. We explore a cross-attention fusion technique to get the global view of the emotion expressed through these delta-self-attended modalities, in order to fuse all the local nuances and global context together. The addition of attention is new to the multi-modal fusion field and currently being scrutinized for on what stage the attention mechanism should be used, this work achieves competitive accuracy for overall and per-class classification which is close to the current state-of-the-art with almost half number of parameters.


翻译:视觉和语言方面; 主要的输入模式是面部表达方式、 语言模式和语言表达方式。 分析任何一种表达方式( 视觉、 语言或Vocal ) 所涉及的问题是, 大量背景信息可能会丢失。 这要求研究人员检查多种模式, 以彻底了解该表达方式的跨模式依赖性和时间背景, 以便分析该表达方式。 这项工作试图保护不同模式内和跨不同模式的长距离依赖性, 这些模式将因使用经常性网络而受瓶颈限制, 并增加了三角注意概念, 侧重于每个模式的地方差异, 以捕捉不同人群的特异性。 我们探索一种交叉注意融合技术, 以获得关于通过这些三角形自闭模式表达的情感的全球观点, 以便将所有本地的细微差别和全球背景结合在一起。 增加的注意力对于多模式融合领域来说是全新的, 并且目前正在对使用何种关注机制进行仔细审查, 这项工作在接近当前状态的半项参数的整体和单级分类方面实现了竞争性的准确性。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
27+阅读 · 2023年1月12日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
31+阅读 · 2021年6月30日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员