Using the mathematical framework of information geometry, we introduce a novel method which allows one to efficiently determine the exact shape of simultaneous confidence regions for non-linearly parametrised models. Furthermore, we show how pointwise confidence bands around the model predictions can be constructed from detailed knowledge of the exact confidence region with little additional computational effort. We exemplify our methods using inference problems in cosmology and epidemic modelling. An open source implementation of the developed schemes is publicly available via the InformationGeometry.jl package for the Julia programming language.
翻译:使用信息几何的数学框架,我们引入了一种新的方法,使人们能够有效地确定非线性偏差模型同时信任区域的确切形状。此外,我们展示了如何通过对准确信任区域的详细了解来围绕模型预测建立点性信任带,而很少做额外的计算努力。我们用宇宙学和流行病建模中的推论问题来举例说明我们的方法。通过Julia编程语言的信息Geophasic.jl软件包公开提供发达方案的公开源头实施。