Robust forecasting of the future anatomical changes inflicted by an ongoing disease is an extremely challenging task that is out of grasp even for experienced healthcare professionals. Such a capability, however, is of great importance since it can improve patient management by providing information on the speed of disease progression already at the admission stage, or it can enrich the clinical trials with fast progressors and avoid the need for control arms by the means of digital twins. In this work, we develop a deep learning method that models the evolution of age-related disease by processing a single medical scan and providing a segmentation of the target anatomy at a requested future point in time. Our method represents a time-invariant physical process and solves a large-scale problem of modeling temporal pixel-level changes utilizing NeuralODEs. In addition, we demonstrate the approaches to incorporate the prior domain-specific constraints into our method and define temporal Dice loss for learning temporal objectives. To evaluate the applicability of our approach across different age-related diseases and imaging modalities, we developed and tested the proposed method on the datasets with 967 retinal OCT volumes of 100 patients with Geographic Atrophy, and 2823 brain MRI volumes of 633 patients with Alzheimer's Disease. For Geographic Atrophy, the proposed method outperformed the related baseline models in the atrophy growth prediction. For Alzheimer's Disease, the proposed method demonstrated remarkable performance in predicting the brain ventricle changes induced by the disease, achieving the state-of-the-art result on TADPOLE challenge.
翻译:在这项工作中,我们开发了一种深层次的学习方法,通过处理单一的医学扫描和在所要求的未来时间点对目标解剖进行分解,来模拟与年龄有关的疾病的演变。我们的方法代表了时间变化性的物理过程,并解决了利用NeurorOders模拟时间像素级变化的大规模问题。此外,我们还展示了将先前特定领域的限制纳入我们的方法中的方法,并界定了学习时间目标的时间性耗损。为了评估我们在不同年龄种疾病和成象模式中采用的方法的可适用性,我们制定并测试了拟议的数据元件方法,其中967种是要求的将来时间点对目标解剖进行分解。我们的方法代表了时间变化性的物理过程,并解决了利用Neurormodes系统模拟时间像素级变化的大规模问题。此外,我们展示了将先前特定领域的限制纳入我们的方法,并界定了学习时间目标所需的时间性耗耗耗。为了评估我们在不同年龄种疾病和成型模式中采用的方法的可适用性,我们开发并测试了拟议的方法,用967次的硬质骨质骨质骨质骨质解的骨质结构,100个患有病人的骨质病变的骨质的骨质变的骨质模型,在地理-骨质的骨质的骨质的骨质的骨质的骨质的骨质的骨质分析方法,以拟议进定的骨质的骨质的骨质的骨质的骨质的骨质的骨质研究方法,以拟议法在拟议方法,在提议的直径上,在地理-23相关的直径定的直径化的直径化的直径直径直径直径谱上,在拟议中,在地理-直学上,在拟议中,在地理-直径的直径的直径的直径学学方法中,在地理-直径上推法的直学上推法上演学上推的直径上推法上,在拟议的直径直径学上演进进进进进进进进进。