We present a new algorithm to train a robust malware detector. Modern malware detectors rely on machine learning algorithms. Now, the adversarial objective is to devise alterations to the malware code to decrease the chance of being detected whilst preserving the functionality and realism of the malware. Adversarial learning is effective in improving robustness but generating functional and realistic adversarial malware samples is non-trivial. Because: i) in contrast to tasks capable of using gradient-based feedback, adversarial learning in a domain without a differentiable mapping function from the problem space (malware code inputs) to the feature space is hard; and ii) it is difficult to ensure the adversarial malware is realistic and functional. This presents a challenge for developing scalable adversarial machine learning algorithms for large datasets at a production or commercial scale to realize robust malware detectors. We propose an alternative; perform adversarial learning in the feature space in contrast to the problem space. We prove the projection of perturbed, yet valid malware, in the problem space into feature space will always be a subset of adversarials generated in the feature space. Hence, by generating a robust network against feature-space adversarial examples, we inherently achieve robustness against problem-space adversarial examples. We formulate a Bayesian adversarial learning objective that captures the distribution of models for improved robustness. We prove that our learning method bounds the difference between the adversarial risk and empirical risk explaining the improved robustness. We show that adversarially trained BNNs achieve state-of-the-art robustness. Notably, adversarially trained BNNs are robust against stronger attacks with larger attack budgets by a margin of up to 15% on a recent production-scale malware dataset of more than 20 million samples.


翻译:我们提出了一个新的算法来训练强大的恶意软件探测器。 现代恶意软件探测器依赖于机器学习算法。 现在, 对抗性的目标是设计对恶意软件代码的修改, 以减少在保存恶意软件功能和现实性的同时被检测的机会。 反向学习在提高稳健性方面是有效的, 但生成功能和现实的对抗性恶意软件样本是非三角的。 因为:( i) 与能够使用基于梯度的反馈的任务相比, 在一个域内进行对抗性学习而没有与问题空间( 软件代码输入) 不同的映射功能; 以及 (ii) 很难在维护恶意软件的功能和现实性的同时减少被检测的机会。 这对开发可扩缩的对立性机器在生产或商业规模上的大型数据集学习算法是一个挑战。 我们提议了一种替代办法; 在特征空间内进行对抗问题空间的对抗性反向性反向的对抗性对抗性对抗性, 我们证明了对质性对抗性对抗性攻击的对抗性攻击的对抗性反应性反应性反应性功能更强, 我们用经过训练的硬性辩论性模型来解释了对空空域的对空性攻击的对立性模型 。 我们通过不断的模型的模型的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的反向的演进进进进进进进进进进进进进进进进进进进进进进进进进进

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
11+阅读 · 2022年9月1日
Generative Adversarial Networks: A Survey and Taxonomy
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员