项目名称: 基于视觉先验学习和混合因子分析的极化SAR图像识别与分类

项目编号: No.61271302

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 侯彪

作者单位: 西安电子科技大学

项目金额: 68万元

中文摘要: 本项目针对当前极化SAR数据处理只关注极化散射特性,而没有考虑人类视觉感知特性的问题,利用视觉先验,将压缩感知理论和视觉注意理论相结合,提出高分辨极化SAR图像的稀疏模型与自适应学习字典构造方法,建立极化SAR图像典型目标的压缩感知域多尺度统计模型和目标观测特征一体化提取方法;将混合因子分析和所提出的稀疏模型相结合,建立极化SAR图像目标识别与分类,和基于压缩谱聚类的SAR图像地物分类和聚类,并用RADARSAT 2和PALSAR的全极化SAR数据验证其有效性。期望在提高极化SAR图像目标识别与分类效果的同时,能进一步完善和促进压缩感知理论的研究和应用。研究成果在本领域重要期刊和会议上发表论文15-20篇,申报国家发明专利6-8项,联合培养博士、硕士5-8名。

中文关键词: 视觉先验学习;极化SAR;图像分类;压缩感知;

英文摘要: This project aims at the problem of current polarimetric SAR data processing not considering visual perception characteristic but only using polarimetric scattering, firstly, high resolution polarimetric SAR sparse model and adaptive learning dictionary construction will be proposed combined with compressed sensing and visual attention theory using visual prior, and the multiscale statistical model of polarimetric SAR image object in compressed sensing domain and the integrative observed feature extraction will be also proposed. Secondly, Polarimetric SAR image object recognition and classification and SAR image terrain classification and clustering combined with Mixture of Factor Analyzers and the sparse model will be proposed. We validate the effectiveness of the proposed method by the full-polarimetric data of RADARSAT 2 and PALSAR. We hope our methods not only to improve performance of Polarimetric SAR image object recognition and classification, but also further boosting and carving out compressed sensing theory and its applications. We will publish 10-15 journals and conferences, apply 6-8 patents and bring up 5-8 Ph.Ds and masters.

英文关键词: visual prior learning;PolSAR;Image classification;Compressive sensing;

成为VIP会员查看完整内容
1

相关内容

基于RGB-D图像的语义场景补全研究进展综述
专知会员服务
28+阅读 · 2021年11月8日
专知会员服务
32+阅读 · 2021年10月8日
专知会员服务
70+阅读 · 2021年3月23日
专知会员服务
18+阅读 · 2020年12月23日
专知会员服务
77+阅读 · 2020年12月6日
基于改进卷积神经网络的短文本分类模型
专知会员服务
25+阅读 · 2020年7月22日
IJCAI 2021 | 不确定性感知小样本图像分类模型,实现SOTA性能
微软研究院AI头条
0+阅读 · 2021年8月19日
光学遥感图像目标检测算法综述
专知
8+阅读 · 2021年3月23日
目标跟踪算法分类
算法与数据结构
20+阅读 · 2018年9月28日
【优青论文】视觉问答技术研究
计算机研究与发展
13+阅读 · 2018年9月21日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
29+阅读 · 2020年3月16日
小贴士
相关VIP内容
基于RGB-D图像的语义场景补全研究进展综述
专知会员服务
28+阅读 · 2021年11月8日
专知会员服务
32+阅读 · 2021年10月8日
专知会员服务
70+阅读 · 2021年3月23日
专知会员服务
18+阅读 · 2020年12月23日
专知会员服务
77+阅读 · 2020年12月6日
基于改进卷积神经网络的短文本分类模型
专知会员服务
25+阅读 · 2020年7月22日
相关资讯
IJCAI 2021 | 不确定性感知小样本图像分类模型,实现SOTA性能
微软研究院AI头条
0+阅读 · 2021年8月19日
光学遥感图像目标检测算法综述
专知
8+阅读 · 2021年3月23日
目标跟踪算法分类
算法与数据结构
20+阅读 · 2018年9月28日
【优青论文】视觉问答技术研究
计算机研究与发展
13+阅读 · 2018年9月21日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员