Graph Neural Networks (GNNs) have achieved great success on a variety of tasks with graph-structural data, among which node classification is an essential one. Unsupervised Graph Domain Adaptation (UGDA) shows its practical value of reducing the labeling cost for node classification. It leverages knowledge from a labeled graph (i.e., source domain) to tackle the same task on another unlabeled graph (i.e., target domain). Most existing UGDA methods heavily rely on the labeled graph in the source domain. They utilize labels from the source domain as the supervision signal and are jointly trained on both the source graph and the target graph. However, in some real-world scenarios, the source graph is inaccessible because of either unavailability or privacy issues. Therefore, we propose a novel scenario named Source Free Unsupervised Graph Domain Adaptation (SFUGDA). In this scenario, the only information we can leverage from the source domain is the well-trained source model, without any exposure to the source graph and its labels. As a result, existing UGDA methods are not feasible anymore. To address the non-trivial adaptation challenges in this practical scenario, we propose a model-agnostic algorithm for domain adaptation to fully exploit the discriminative ability of the source model while preserving the consistency of structural proximity on the target graph. We prove the effectiveness of the proposed algorithm both theoretically and empirically. The experimental results on four cross-domain tasks show consistent improvements of the Macro-F1 score up to 0.17.
翻译:内建图网络( GNNS) 在使用图表结构数据( 其中节点分类是不可或缺的) 完成各种任务方面取得了巨大成功。 不受监督的图形域适应( UGDA) 显示其减少节点分类标签成本的实际价值。 它利用标签图形( 源域) 的知识处理另一个没有标签的图表( 目标域) 的相同任务。 大多数现有的 UGDA 方法在源域内大量依赖标记的跨结构图。 它们使用源域的标签作为监督信号, 并在源图和目标图上进行联合培训。 然而, 在一些现实世界的情景中, 源图无法被使用, 原因是找不到或隐私问题 。 因此, 我们提出了一个名为“ 源 不受监督的图域域域域域域域域域( 源域域域) 适应( 源域) 的相同任务。 我们只能从源域中获取的信息是拟议的经过良好训练的来源模型, 而不接触源图及其标签。 结果是, 现有的 UGDA 的数值模型在源码图图和目标图上, 已经不可行, 在实际的轨迹定的模型模型上, 显示了一种不可行的方法是可行的,, 。