Non-rigid point cloud registration is a key component in many computer vision and computer graphics applications. The high complexity of the unknown non-rigid motion make this task a challenging problem. In this paper, we break down this problem via hierarchical motion decomposition. Our method called Neural Deformation Pyramid (NDP) represents non-rigid motion using a pyramid architecture. Each pyramid level, denoted by a Multi-Layer Perception (MLP), takes as input a sinusoidally encoded 3D point and outputs its motion increments from the previous level. The sinusoidal function starts with a low input frequency and gradually increases when the pyramid level goes down. This allows a multi-level rigid to nonrigid motion decomposition and also speeds up the solving by 50 times compared to the existing MLP-based approach. Our method achieves advanced partialto-partial non-rigid point cloud registration results on the 4DMatch/4DLoMatch benchmark under both no-learned and supervised settings.
翻译:非硬点云登记是许多计算机视觉和计算机图形应用中的一个关键组成部分。 未知非硬点运动的高度复杂性使得这项任务成为一个具有挑战性的问题。 在本文中, 我们通过等级运动分解来打破这个问题。 我们称为神经脱形金字塔(NDP) 的方法代表了使用金字塔结构的非硬点运动。 由多湖感知(MLP) 表示的金字塔水平, 将前一级对3D点进行正弦编码的增益作为输入。 等离子函数以低输入频率开始, 当金字塔水平下降时逐渐增加。 这样可以使多层次的硬度到非硬度运动分解, 并且比现有的 MLP 方法加速50 次的解谜速度。 我们的方法在不理解和监督下的 4DMatch/4DLoMatch 基准下, 达到高级到部分非硬点云登记结果。