We consider the discretization of elliptic boundary-value problems by variational physics-informed neural networks (VPINNs), in which test functions are continuous, piecewise linear functions on a triangulation of the domain. We define an a posteriori error estimator, made of a residual-type term, a loss-function term, and data oscillation terms. We prove that the estimator is both reliable and efficient in controlling the energy norm of the error between the exact and VPINN solutions. Numerical results are in excellent agreement with the theoretical predictions.
翻译:我们考虑了通过变化物理知情神经网络(VPINNs)将椭圆边界价值问题分解的问题,在这些网络中,测试功能是连续的,在对域进行三角勘测时有片断线性功能。我们定义了一个事后误差估计器,由剩余类型的术语、损失功能术语和数据振荡术语组成。我们证明,估算器在控制精确和VPINN解决方案之间错误的能源规范方面既可靠又有效。数字结果与理论预测非常一致。