This paper presents a multi-agent reinforcement learning (MARL) scheme for proactive Multi-Camera Collaboration in 3D Human Pose Estimation in dynamic human crowds. Traditional fixed-viewpoint multi-camera solutions for human motion capture (MoCap) are limited in capture space and susceptible to dynamic occlusions. Active camera approaches proactively control camera poses to find optimal viewpoints for 3D reconstruction. However, current methods still face challenges with credit assignment and environment dynamics. To address these issues, our proposed method introduces a novel Collaborative Triangulation Contribution Reward (CTCR) that improves convergence and alleviates multi-agent credit assignment issues resulting from using 3D reconstruction accuracy as the shared reward. Additionally, we jointly train our model with multiple world dynamics learning tasks to better capture environment dynamics and encourage anticipatory behaviors for occlusion avoidance. We evaluate our proposed method in four photo-realistic UE4 environments to ensure validity and generalizability. Empirical results show that our method outperforms fixed and active baselines in various scenarios with different numbers of cameras and humans.
翻译:本文介绍了在3D人类活性人群中进行3D人类脉冲估计的多试剂强化学习(MARL)计划。传统的人类运动捕捉固定点多镜头解决方案(MACP)在捕捉空间方面有限,容易被动态隔绝。积极的照相机采用主动控制相机,以寻找3D重建的最佳观点。然而,目前的方法在信用分配和环境动态方面仍然面临挑战。为了解决这些问题,我们建议的方法引入了一种新型的合作三角协作贡献回报(CTCR),该方法将利用3D重建精确度作为共享奖励,从而改善趋同并减轻多试剂信用分配问题。此外,我们用多种世界动态学习任务联合培训我们的模型,以更好地捕捉环境动态,鼓励避免隐蔽的防腐蚀性行为。我们评估了四个摄影现实化的UE4环境中的拟议方法,以确保有效性和可概括性。根据经验得出的结果显示,我们的方法超越了不同摄影机和人的不同情景下固定和活跃的基线。</s>