Given the limited computing capabilities on autonomous vehicles, onboard processing of large volumes of latency-sensitive tasks presents significant challenges. While vehicular edge computing (VEC) has emerged as a solution, offloading data-intensive tasks to roadside servers or other vehicles is hindered by large obstacles like trucks/buses and the surge in service demands during rush hours. To address these challenges, Reconfigurable Intelligent Surface (RIS) can be leveraged to mitigate interference from ground signals and reach more edge servers by elevating RIS adaptively. To this end, we propose RAISE, an optimization framework for RIS placement in multi-server VEC systems. Specifically, RAISE optimizes RIS altitude and tilt angle together with the optimal task assignment to maximize task throughput under deadline constraints. To find a solution, a two-layer optimization approach is proposed, where the inner layer exploits the unimodularity of the task assignment problem to derive the efficient optimal strategy while the outer layer develops a near-optimal hill climbing (HC) algorithm for RIS placement with low complexity. Extensive experiments demonstrate that the proposed RAISE framework consistently outperforms existing benchmarks.
翻译:暂无翻译