Large Language Models face significant performance challenges in specialized domains, with state-of-the-art models achieving only 45.9% accuracy on medical coding tasks. This study proposes a Hierarchical Error Correction (HEC) framework that addresses domain-specific AI limitations through systematic error analysis and targeted intervention strategies. We analyze error patterns across four specialized domains and find that AI errors follow consistent hierarchical structures: Knowledge-layer errors (58.4%), Reasoning-layer errors (39.6%), and Complexity-layer errors (2.0%). Based on these patterns, we develop a three-stage correction framework that addresses errors according to their hierarchical importance and demonstrates that framework effectiveness correlates inversely with baseline task performance. Experimental validation across medical transcription (4,921 cases), legal document classification (1,000 cases), political bias detection (645 cases), and legal reasoning (1,000 cases) shows consistent improvements. Cross-model validation across five LLM architectures demonstrates average improvements of 11.2 percentage points (p < 0.001). However, analysis reveals framework limitations in high-baseline tasks (>75% accuracy), where hierarchical intervention may interfere with effective reasoning processes. The results suggest that systematic error analysis can guide effective AI enhancement strategies in specialized domains, particularly for moderate-baseline tasks, while highlighting the importance of understanding framework boundaries for optimal deployment.
翻译:暂无翻译