The problem of quantifying uncertainty about the locations of multiple change points by means of confidence intervals is addressed. The asymptotic distribution of the change point estimators obtained as the local maximisers of moving sum statistics is derived, where the limit distributions differ depending on whether the corresponding size of changes is local, i.e. tends to zero as the sample size increases, or fixed. A bootstrap procedure for confidence interval generation is proposed which adapts to the unknown magnitude of changes and guarantees asymptotic validity both for local and fixed changes. Simulation studies show good performance of the proposed bootstrap procedure, and some discussions about how it can be extended to serially dependent errors is provided.


翻译:解决了以互信间隔方式量化多个变更点位置的不确定性问题; 得出了作为移动总统计数据当地最大标准而获得的变更点估计值的零点分布,根据相应的变化规模是局部的,即随着抽样规模的增加往往为零,还是固定的,限制分布有所不同; 提出了一种产生互信间隔的靴式程序,该程序适应了变化的未知规模,保证了本地和固定变化的无减损性; 模拟研究显示了拟议的靴套程序的良好表现,并提出了一些关于如何将其扩展至有序列依赖性的错误的讨论。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
已删除
将门创投
4+阅读 · 2019年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Arxiv
0+阅读 · 2022年2月22日
On Variance Estimation of Random Forests
Arxiv
0+阅读 · 2022年2月18日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Top
微信扫码咨询专知VIP会员