The conditionality principle $C$ plays a key role in attempts to characterize the concept of statistical evidence. The standard version of $C$ considers a model and a derived conditional model, formed by conditioning on an ancillary statistic for the model, together with the data, to be equivalent with respect to their statistical evidence content. This equivalence is considered to hold for any ancillary statistic for the model but creates two problems. First, there can be more than one maximal ancillary in a given context and this leads to $C$ not being an equivalence relation and, as such, calls into question whether $C$ is a proper characterization of statistical evidence. Second, a statistic $A$ can change from ancillary to informative (in its marginal distribution) when another ancillary $B$ changes, from having one known distribution $P_{B},$ to having another known distribution $Q_{B}.$ This means that the stability of ancillarity differs across ancillary statistics and raises the issue of when a statistic can be said to be truly ancillary. It is therefore natural, and practically important, to limit conditioning to the set of ancillaries whose distribution is irrelevant to the ancillary status of any other ancillary statistic. This results in a family of ancillaries for which there is a unique maximal member. This also gives a new principle for inference, the stable conditionality principle, that satisfies the criteria required for any principle whose aim is to characterize statistical evidence.


翻译:条件性原则$C$在试图确定统计证据概念的特点方面起着关键作用。标准版本$C$认为一个模型和衍生的有条件模型,该模型以该模型的辅助统计数据和数据为条件,形成了一个模型和衍生的有条件模型,在统计证据内容方面与该模型的任何辅助统计数据相等。这一等值被认为适用于该模型的任何辅助统计数据,但造成了两个问题。首先,在特定背景下,可能存在不止一个最高辅助因素,这导致一个最高辅助因素在某种情况下可能不是一个对等关系,因此,质疑美元是否是对统计证据的适当定性。第二,当另一个辅助B$的变动,从已知的分发量$P ⁇ B}到另一个已知的分发量美元等值,将美元作为辅助因素(在其边际分布中)形成一个衍生要素时,一个美元统计值可以改变为信息性(从附带要素改为信息性模式),因为另一个辅助值的变动,从已知的分发量为$P ⁇ B},到另外一个已知的分发量值为$B}产生两个问题。这意味着,在某个辅助统计数据的稳定性的稳定性问题何时可以说是真正的辅助性关系,因此,将限制其分配与辅助性原则的调节性是必然和最高性原则。这个原则,这是一个核心性原则的必然的结果。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
详解PyTorch中的ModuleList和Sequential
极市平台
0+阅读 · 2022年1月28日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
5+阅读 · 2015年7月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
22+阅读 · 2021年12月19日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
详解PyTorch中的ModuleList和Sequential
极市平台
0+阅读 · 2022年1月28日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
5+阅读 · 2015年7月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员