Evaluating the real-world performance of network protocols is challenging. Randomized control trials (RCT) are expensive and inaccessible to most researchers, while expert-designed simulators fail to capture complex behaviors in real networks. We present CausalSim, a data-driven simulator for network protocols that addresses this challenge. Learning network behavior from observational data is complicated due to the bias introduced by the protocols used during data collection. CausalSim uses traces from an initial RCT under a set of protocols to learn a causal network model, effectively removing the biases present in the data. Using this model, CausalSim can then simulate any protocol over the same traces (i.e., for counterfactual predictions). Key to CausalSim is the novel use of adversarial neural network training that exploits distributional invariances that are present due to the training data coming from an RCT. Our extensive evaluation of CausalSim on both real and synthetic datasets and two use cases, including more than nine months of real data from the Puffer video streaming system, shows that it provides accurate counterfactual predictions, reducing prediction error by 44% and 53% on average compared to expert-designed and standard supervised learning baselines.
翻译:评估网络协议的真实性能是一项挑战。 随机控制试验(RCT)费用昂贵,而且大多数研究人员无法进入, 而专家设计的模拟器无法捕捉真实网络中的复杂行为。 我们展示了由数据驱动的网络协议模拟器CausalSim, 即应对这一挑战的网络协议的数据驱动模拟器CausalSim。 从观测数据中学习网络行为是复杂的,因为数据收集过程中使用的程序存在偏差。 CausalSim使用一套协议下初始RCT的痕迹学习因果关系网络模型,从而有效地消除数据中存在的偏差。 使用这个模型, CausalSim 能够随后模拟同一痕迹(即反事实预测)的任何协议。 CausalSim 的键是新使用的对抗性神经网络培训,它利用了来自RCT的培训数据中出现的分布差异。 我们在真实和合成数据集中广泛评估了CausSim 以及两个使用的案例, 包括九个多月以上的Puffer视频流系统中的真实数据, 能够模拟任何协议协议(即反事实性预测 ), 显示它提供了精确的反差率预测, 通过测试了44 和受监督的专家基线, 和受监督的基线预测。