Analyzing process data at varying levels of granularity is important to derive actionable insights and support informed decision-making. Object-Centric Event Data (OCED) enhances process mining by capturing interactions among multiple objects within events, leading to the discovery of more detailed and realistic yet complex process models. The lack of methods to adjust the granularity of the analysis limits users to leverage the full potential of Object-Centric Process Mining (OCPM). To address this gap, we propose four operations: drill-down, roll-up, unfold, and fold, which enable changing the granularity of analysis when working with Object-Centric Event Logs (OCEL). These operations allow analysts to seamlessly transition between detailed and aggregated process models, facilitating the discovery of insights that require varying levels of abstraction. We formally define these operations and implement them in an open-source Python library. To validate their utility, we applied the approach to real-world OCEL data extracted from a learning management system that covered a four-year period and approximately 400 students. Our evaluation demonstrates significant improvements in precision and fitness metrics for models discovered before and after applying these operations. This approach can empower analysts to perform more flexible and comprehensive process exploration, unlocking actionable insights through adaptable granularity adjustments.
翻译:暂无翻译