The continuous increase in global population and the impact of climate change on crop production are expected to affect the food sector significantly. In this context, there is need for timely, large-scale and precise mapping of crops for evidence-based decision making. A key enabler towards this direction are new satellite missions that freely offer big remote sensing data of high spatio-temporal resolution and global coverage. During the previous decade and because of this surge of big Earth observations, deep learning methods have dominated the remote sensing and crop mapping literature. Nevertheless, deep learning models require large amounts of annotated data that are scarce and hard-to-acquire. To address this problem, transfer learning methods can be used to exploit available annotations and enable crop mapping for other regions, crop types and years of inspection. In this work, we have developed and trained a deep learning model for paddy rice detection in South Korea using Sentinel-1 VH time-series. We then fine-tune the model for i) paddy rice detection in France and Spain and ii) barley detection in the Netherlands. Additionally, we propose a modification in the pre-trained weights in order to incorporate extra input features (Sentinel-1 VV). Our approach shows excellent performance when transferring in different areas for the same crop type and rather promising results when transferring in a different area and crop type.
翻译:全球人口持续增长以及气候变化对作物生产的影响预计将对粮食部门产生重大影响。在这方面,需要及时、大规模和精确地绘制作物地图,以便作出循证决策。这一方向的一个关键推动因素是:新的卫星飞行任务,这些飞行任务免费提供具有高度时空分辨率和全球覆盖度的大型遥感数据。在过去十年里,由于大规模地球观测的激增,深层学习方法在遥感和作物绘图文献中占主导地位。然而,深层学习模型需要大量附带说明的数据,这些数据稀缺而难以获取。为解决这一问题,可以使用转移学习方法利用现有的注释,并为其他区域、作物类型和年限的检查绘制作物图。在这项工作中,我们开发并培训了在南朝鲜使用Sentinel-1 VH时间序列探测稻谷的深层学习模型。我们随后对法国和西班牙测得稻米和作物绘图文献的模型进行了微调,并在荷兰测得大麦。此外,我们提议在采用预先培训的重量以调整前的重量,以便利用现有的说明,为其他地区、作物类型和年份绘制作物图。在不同的作物类型转换中,在采用有希望的作物类型特征时,在不同的区域转换时,我们提出改进。