We study the sample placement and shortest tour problem for robots tasked with mapping environmental phenomena modeled as stationary random fields. The objective is to minimize the resources used (samples or tour length) while guaranteeing estimation accuracy. We give approximation algorithms for both problems in convex environments. These improve previously known results, both in terms of theoretical guarantees and in simulations. In addition, we disprove an existing claim in the literature on a lower bound for a solution to the sample placement problem.
翻译:我们研究机器人的样本位置和最短的旅游问题,这些机器人的任务是将环境现象作为固定随机场进行测绘,目的是尽量减少所使用的资源(样本或巡航长度),同时保证估算的准确性。我们给出了对于在二次曲线环境中这两个问题的近似算法。这在理论保障和模拟方面都改善了先前已知的结果。此外,我们反驳了文献中现有的关于样本布置问题解决方案的下限的说法。