We study fundamental problems in linear algebra, such as finding a maximal linearly independent subset of rows or columns (a basis), solving linear regression, or computing a subspace embedding. For these problems, we consider input matrices $\mathbf{A}\in\mathbb{R}^{n\times d}$ with $n > d$. The input can be read in $\text{nnz}(\mathbf{A})$ time, which denotes the number of nonzero entries of $\mathbf{A}$. In this paper, we show that beyond the time required to read the input matrix, these fundamental linear algebra problems can be solved in $d^{\omega}$ time, i.e., where $\omega \approx 2.37$ is the current matrix-multiplication exponent. To do so, we introduce a constant-factor subspace embedding with the optimal $m=\mathcal{O}(d)$ number of rows, and which can be applied in time $\mathcal{O}\left(\frac{\text{nnz}(\mathbf{A})}{\alpha}\right) + d^{2 + \alpha}\text{poly}(\log d)$ for any trade-off parameter $\alpha>0$, tightening a recent result by Chepurko et. al. [SODA 2022] that achieves an $\exp(\text{poly}(\log\log n))$ distortion with $m=d\cdot\text{poly}(\log\log d)$ rows in $\mathcal{O}\left(\frac{\text{nnz}(\mathbf{A})}{\alpha}+d^{2+\alpha+o(1)}\right)$ time. Our subspace embedding uses a recently shown property of stacked Subsampled Randomized Hadamard Transforms (SRHT), which actually increase the input dimension, to "spread" the mass of an input vector among a large number of coordinates, followed by random sampling. To control the effects of random sampling, we use fast semidefinite programming to reweight the rows. We then use our constant-factor subspace embedding to give the first optimal runtime algorithms for finding a maximal linearly independent subset of columns, regression, and leverage score sampling. To do so, we also introduce a novel subroutine that iteratively grows a set of independent rows, which may be of independent interest.


翻译:我们在线性代数中研究基本问题, 例如找到一个最直线的线性子集( 基数 ), 解决线性回归, 或计算子空间嵌入 。 对于这些问题, 我们考虑输入矩阵 $\ mathb{ A\ in\ mathb{ R\ n\ f time d} 美元 。 输入可以用 $\ text{ nnnnnz} (mathbf}A} ) 来阅读。 输入可以用 $\ tm 线性子子子子子子子子子子子子子子子子子子子子子子子子子子子子子子子子, 以 $m\ ma\ ma\\ fr= dmax dmax proadental 。 要这样做, 我们引入一个恒定的子子子空间, 以最优的 $m\\ max cal_ a ral=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月19日
Arxiv
0+阅读 · 2023年1月18日
Arxiv
0+阅读 · 2023年1月14日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员