We study fundamental problems in linear algebra, such as finding a maximal linearly independent subset of rows or columns (a basis), solving linear regression, or computing a subspace embedding. For these problems, we consider input matrices $\mathbf{A}\in\mathbb{R}^{n\times d}$ with $n > d$. The input can be read in $\text{nnz}(\mathbf{A})$ time, which denotes the number of nonzero entries of $\mathbf{A}$. In this paper, we show that beyond the time required to read the input matrix, these fundamental linear algebra problems can be solved in $d^{\omega}$ time, i.e., where $\omega \approx 2.37$ is the current matrix-multiplication exponent. To do so, we introduce a constant-factor subspace embedding with the optimal $m=\mathcal{O}(d)$ number of rows, and which can be applied in time $\mathcal{O}\left(\frac{\text{nnz}(\mathbf{A})}{\alpha}\right) + d^{2 + \alpha}\text{poly}(\log d)$ for any trade-off parameter $\alpha>0$, tightening a recent result by Chepurko et. al. [SODA 2022] that achieves an $\exp(\text{poly}(\log\log n))$ distortion with $m=d\cdot\text{poly}(\log\log d)$ rows in $\mathcal{O}\left(\frac{\text{nnz}(\mathbf{A})}{\alpha}+d^{2+\alpha+o(1)}\right)$ time. Our subspace embedding uses a recently shown property of stacked Subsampled Randomized Hadamard Transforms (SRHT), which actually increase the input dimension, to "spread" the mass of an input vector among a large number of coordinates, followed by random sampling. To control the effects of random sampling, we use fast semidefinite programming to reweight the rows. We then use our constant-factor subspace embedding to give the first optimal runtime algorithms for finding a maximal linearly independent subset of columns, regression, and leverage score sampling. To do so, we also introduce a novel subroutine that iteratively grows a set of independent rows, which may be of independent interest.
翻译:我们在线性代数中研究基本问题, 例如找到一个最直线的线性子集( 基数 ), 解决线性回归, 或计算子空间嵌入 。 对于这些问题, 我们考虑输入矩阵 $\ mathb{ A\ in\ mathb{ R\ n\ f time d} 美元 。 输入可以用 $\ text{ nnnnnz} (mathbf}A} ) 来阅读。 输入可以用 $\ tm 线性子子子子子子子子子子子子子子子子子子子子子子子子子子子子子子子子, 以 $m\ ma\ ma\\ fr= dmax dmax proadental 。 要这样做, 我们引入一个恒定的子子子空间, 以最优的 $m\\ max cal_ a ral=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\