We present HybVIO, a novel hybrid approach for combining filtering-based visual-inertial odometry (VIO) with optimization-based SLAM. The core of our method is highly robust, independent VIO with improved IMU bias modeling, outlier rejection, stationarity detection, and feature track selection, which is adjustable to run on embedded hardware. Long-term consistency is achieved with a loosely-coupled SLAM module. In academic benchmarks, our solution yields excellent performance in all categories, especially in the real-time use case, where we outperform the current state-of-the-art. We also demonstrate the feasibility of VIO for vehicular tracking on consumer-grade hardware using a custom dataset, and show good performance in comparison to current commercial VISLAM alternatives.
翻译:我们提出HybVIO,这是将基于过滤的视觉-免疫测量法(VIO)与基于优化的SLAM相结合的一种新型混合方法。我们的方法核心是高度稳健、独立的VIO,改进了IMU偏差建模、外部拒绝、静态检测和功能轨迹选择,可以调整以运行嵌入的硬件。与松散的SLAM模块实现长期一致性。在学术基准中,我们的解决办法在所有类别中都取得了优异的成绩,特别是在实时使用的情况下,我们比目前的最新技术要好。我们还展示了VIO使用定制数据集对消费者级硬件进行车辆跟踪的可行性,并展示了与当前商业VISLAM替代软件相比的优良性能。