This study presents an approach to lane detection involving the prediction of binary segmentation masks and per-pixel affinity fields. These affinity fields, along with the binary masks, can then be used to cluster lane pixels horizontally and vertically into corresponding lane instances in a post-processing step. This clustering is achieved through a simple row-by-row decoding process with little overhead; such an approach allows LaneAF to detect a variable number of lanes without assuming a fixed or maximum number of lanes. Moreover, this form of clustering is more interpretable in comparison to previous visual clustering approaches, and can be analyzed to identify and correct sources of error. Qualitative and quantitative results obtained on popular lane detection datasets demonstrate the model's ability to detect and cluster lanes effectively and robustly. Our proposed approach sets a new state-of-the-art on the challenging CULane dataset and the recently introduced Unsupervised LLAMAS dataset.
翻译:本研究提出了一种对车道探测方法,包括预测二元分解面罩和双象形近似场,这些近似字段连同二元面罩可被用于将车道像素横向和垂直分组成后处理步骤的相应车道情况。这种集群是通过一个简单的逐行解码程序实现的,低高压小分行解码程序;这种方法使LaneAF能够在不假定固定或最大车道数的情况下探测多行道。此外,与以往的视觉集群方法相比,这种集群形式更容易解释,可以分析以辨别和纠正误差源。流行车道探测数据集取得的定性和定量结果表明该模型能够有效和稳健地探测和分组车道。我们提出的办法为具有挑战性的Culane数据集和最近推出的未超超高LMAMAS数据集制定了新的最新技术。