This work studies object goal navigation task, which involves navigating to the closest object related to the given semantic category in unseen environments. Recent works have shown significant achievements both in the end-to-end Reinforcement Learning approach and modular systems, but need a big step forward to be robust and optimal. We propose a hierarchical method that incorporates standard task formulation and additional area knowledge as landmarks, with a way to extract these landmarks. In a hierarchy, a low level consists of separately trained algorithms to the most intuitive skills, and a high level decides which skill is needed at this moment. With all proposed solutions, we achieve a 0.75 success rate in a realistic Habitat simulator. After a small stage of additional model training in a reconstructed virtual area at a simulator, we successfully confirmed our results in a real-world case.


翻译:这份工作研究的目标导航任务涉及在无形环境中探索到与特定语义类别有关的最接近的对象。最近的工作显示,在端到端强化学习方法和模块化系统中都取得了显著成就,但需要向前迈出一大步才能做到稳健和最佳。我们提出了一个等级方法,将标准任务拟订和更多地区知识作为里程碑,以提取这些里程碑。在一个等级中,一个低层次由分别培训的最直观技能的算法组成,以及一个高层次决定目前需要哪些技能。我们利用所有拟议的解决方案,在现实的人居模拟器中取得了0.75的成功率。在模拟器中,在经过一个经过一个小阶段在重建后的虚拟区域进行额外示范培训的模拟器之后,我们在现实世界案例中成功地确认了我们的成果。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
13+阅读 · 2021年3月3日
Arxiv
5+阅读 · 2020年6月16日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员