Existing imitation learning methods suffer from low efficiency and generalization ability when facing the road option problem in an urban environment. In this paper, we propose a yaw-guided imitation learning method to improve the road option performance in an end-to-end autonomous driving paradigm in terms of the efficiency of exploiting training samples and adaptability to changing environments. Specifically, the yaw information is provided by the trajectory of the navigation map. Our end-to-end architecture, Yaw-guided Imitation Learning with ResNet34 Attention (YILRatt), integrates the ResNet34 backbone and attention mechanism to obtain an accurate perception. It does not need high precision maps and realizes fully end-to-end autonomous driving given the yaw information provided by a consumer-level GPS receiver. By analyzing the attention heat maps, we can reveal some causal relationship between decision-making and scene perception, where, in particular, failure cases are caused by erroneous perception. We collect expert experience in the Carla 0.9.11 simulator and improve the benchmark CoRL2017 and NoCrash. Experimental results show that YILRatt has a 26.27% higher success rate than the SOTA CILRS. The code, dataset, benchmark and experimental results can be found at https://github.com/Yandong024/Yaw-guided-IL.git


翻译:现有模拟学习方法在城市环境中面临道路选择问题时,效率低,普遍化能力低;在本文件中,我们建议采用亚伍制模拟学习方法,在利用培训样本和适应变化环境的效率方面,在利用培训样本和适应变化环境方面,以端到端自主驱动模式改进道路选择绩效;具体地说,通过导航图的轨迹提供了亚毛信息;我们的端到端结构,Yaw-制导模拟学习,ResNet34(YilRatt),结合ResNet34骨干和关注机制,以获得准确的认识;由于消费者级全球定位系统接收器提供的信息,我们不需要高精确的地图,完全实现端到端的自主驱动。通过分析热图,我们可以揭示决策与场景感知之间的某种因果关系,特别是错误感知导致的失败案例。我们在卡拉·0.911模拟器中收集了专家经验,改进了基准 CoRL2017和NoClash。 实验结果表明,Yilratt拥有26.27%的端到端自主驱动力驱动力驱动力,在SOLV/Y&TAILA中找到了数据基准。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
深度学习界圣经“花书”《Deep Learning》中文版来了
专知会员服务
235+阅读 · 2019年10月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
ICRA 2019 论文速览 | 传统SLAM、三维视觉算法进展
计算机视觉life
50+阅读 · 2019年7月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
Arxiv
12+阅读 · 2021年6月21日
Learning Dynamic Routing for Semantic Segmentation
Arxiv
8+阅读 · 2020年3月23日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
ICRA 2019 论文速览 | 传统SLAM、三维视觉算法进展
计算机视觉life
50+阅读 · 2019年7月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
Top
微信扫码咨询专知VIP会员