Existing imitation learning methods suffer from low efficiency and generalization ability when facing the road option problem in an urban environment. In this paper, we propose a yaw-guided imitation learning method to improve the road option performance in an end-to-end autonomous driving paradigm in terms of the efficiency of exploiting training samples and adaptability to changing environments. Specifically, the yaw information is provided by the trajectory of the navigation map. Our end-to-end architecture, Yaw-guided Imitation Learning with ResNet34 Attention (YILRatt), integrates the ResNet34 backbone and attention mechanism to obtain an accurate perception. It does not need high precision maps and realizes fully end-to-end autonomous driving given the yaw information provided by a consumer-level GPS receiver. By analyzing the attention heat maps, we can reveal some causal relationship between decision-making and scene perception, where, in particular, failure cases are caused by erroneous perception. We collect expert experience in the Carla 0.9.11 simulator and improve the benchmark CoRL2017 and NoCrash. Experimental results show that YILRatt has a 26.27% higher success rate than the SOTA CILRS. The code, dataset, benchmark and experimental results can be found at https://github.com/Yandong024/Yaw-guided-IL.git
翻译:现有模拟学习方法在城市环境中面临道路选择问题时,效率低,普遍化能力低;在本文件中,我们建议采用亚伍制模拟学习方法,在利用培训样本和适应变化环境的效率方面,在利用培训样本和适应变化环境方面,以端到端自主驱动模式改进道路选择绩效;具体地说,通过导航图的轨迹提供了亚毛信息;我们的端到端结构,Yaw-制导模拟学习,ResNet34(YilRatt),结合ResNet34骨干和关注机制,以获得准确的认识;由于消费者级全球定位系统接收器提供的信息,我们不需要高精确的地图,完全实现端到端的自主驱动。通过分析热图,我们可以揭示决策与场景感知之间的某种因果关系,特别是错误感知导致的失败案例。我们在卡拉·0.911模拟器中收集了专家经验,改进了基准 CoRL2017和NoClash。 实验结果表明,Yilratt拥有26.27%的端到端自主驱动力驱动力驱动力,在SOLV/Y&TAILA中找到了数据基准。