The sketch-and-project, as a general archetypal algorithm for solving linear systems, unifies a variety of randomized iterative methods such as the randomized Kaczmarz and randomized coordinate descent. However, since it aims to find a least-norm solution from a linear system, the randomized sparse Kaczmarz can not be included. This motivates us to propose a more general framework, called sketched Bregman projection (SBP) method, in which we are able to find solutions with certain structures from linear systems. To generalize the concept of adaptive sampling to the SBP method, we show how the progress, measured by Bregman distance, of single step depends directly on a sketched loss function. Theoretically, we provide detailed global convergence results for the SBP method with different adaptive sampling rules. At last, for the (sparse) Kaczmarz methods, a group of numerical simulations are tested, with which we verify that the methods utilizing sampling Kaczmarz-Motzkin rule demands the fewest computational costs to achieve a given error bound comparing to the corresponding methods with other sampling rules.
翻译:草图和项目,作为解决线性系统的一般拱门算法,统一了各种随机迭代方法,如随机卡兹马尔兹和随机随机坐标下降。然而,由于草图和项目的目的是从线性系统中找到最不北的溶液,因此无法将随机稀释的卡茨马尔兹列入其中。这促使我们提出一个更一般性的框架,称为草图的布雷格曼投影(SBP)方法,在这个框架内,我们能够从线性系统的某些结构中找到解决办法。为了将适应性取样概念概括到SBP方法,我们用布雷格曼距离测量的单步进度如何直接取决于一个草图损失函数。理论上,我们提供了具有不同适应性取样规则的SBP方法的详细全球趋同结果。最后,对于(Sparse)Kaczmarz方法,我们测试了一组数字模拟方法,以核查使用取样Kaczmarz-Metzkin规则的方法,我们要求用最少的计算成本来达到一个受限制的错误。从其他取样规则进行比较的相应方法。