Most existing graph neural networks (GNNs) learn node embeddings using the framework of message passing and aggregation. Such GNNs are incapable of learning relative positions between graph nodes within a graph. To empower GNNs with the awareness of node positions, some nodes are set as anchors. Then, using the distances from a node to the anchors, GNNs can infer relative positions between nodes. However, P-GNNs arbitrarily select anchors, leading to compromising position-awareness and feature extraction. To eliminate this compromise, we demonstrate that selecting evenly distributed and asymmetric anchors is essential. On the other hand, we show that choosing anchors that can aggregate embeddings of all the nodes within a graph is NP-hard. Therefore, devising efficient optimal algorithms in a deterministic approach is practically not feasible. To ensure position-awareness and bypass NP-completeness, we propose Position-Sensing Graph Neural Networks (PSGNNs), learning how to choose anchors in a back-propagatable fashion. Experiments verify the effectiveness of PSGNNs against state-of-the-art GNNs, substantially improving performance on various synthetic and real-world graph datasets while enjoying stable scalability. Specifically, PSGNNs on average boost AUC more than 14% for pairwise node classification and 18% for link prediction over the existing state-of-the-art position-aware methods. Our source code is publicly available at: https://github.com/ZhenyueQin/PSGNN
翻译:大多数现有的图形神经网络(GNNS) 利用传递和汇总信息的框架学习嵌入节点。 这些 GNNS无法在图形中学习图形节点之间的相对位置。 为了赋予 GNNS 以对节点位置的认识, 某些节点被设置为锚。 然后, 使用节点到锚的距离, GNNS 可以推断结点之间的相对位置。 然而, P- GNNS 任意选择锚, 导致降低定位意识和特征提取。 为了消除这一折中, 我们证明选择分布均衡和不对称的锚是不可或缺的。 另一方面, 我们显示选择能够将图表中所有节点的嵌入加在一起的锚是硬的。 因此, 使用从节点到锚点之间的距离, GNNNW 就可以将有效的最佳算法设定为固定值。 为了确保定位意识和绕过NP- NEW 网络(PSG NNNP) 学习如何以反调的方式选择锚点。 实验 PSGNNNSs 相对于州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 级- 州- 州- 州- 州- 州- 州- 州- 州- 州- 级- 州- 州- 州- 州- 州- 州- 州- 级- 州- 级- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州