Stochastic reduced-order modeling based on time-dependent bases (TDBs) has proven successful for extracting and exploiting low-dimensional manifold from stochastic partial differential equations (SPDEs). The nominal computational cost of solving a rank-$r$ reduced-order model (ROM) based on time-dependent basis, a.k.a. TDB-ROM, is roughly equal to that of solving the full-order model for $r$ random samples. As of now, this nominal performance can only be achieved for linear or quadratic SPDEs -- at the expense of a highly intrusive process. On the other hand, for problems with non-polynomial nonlinearity, the computational cost of solving the TDB evolution equations is the same as solving the full-order model. In this work, we present an adaptive sparse interpolation algorithm that enables stochastic TDB-ROMs to achieve nominal computational cost for generic nonlinear SPDEs. Our algorithm constructs a low-rank approximation for the right hand side of the SPDE using the discrete empirical interpolation method (DEIM). The presented algorithm does not require any offline computation and as a result the low-rank approximation can adapt to any transient changes of the dynamics on the fly. We also propose a rank-adaptive strategy to control the error of the sparse interpolation. Our algorithm achieves computational speedup by adaptive sampling of the state and random spaces. We illustrate the efficiency of our approach for two test cases: (1) one-dimensional stochastic Burgers' equation, and (2) two-dimensional compressible Navier-Stokes equations subject to one-hundred-dimensional random perturbations. In all cases, the presented algorithm results in orders of magnitude reduction in the computational cost.


翻译:以基于时间的基数( TDBs) 为基础, 沙粒减序建模, 已证明成功提取和利用了从随机偏差部分方程式( SPDEs) 中提取和利用低维方程式。 在基于时间的基数( a.k.a. a. TD-ROM) 的基础上, 解决一阶- 美元减序模型( ROM) 的名义计算成本与解决美元随机样本全级模型大致相等。 从目前看, 这种名义性性能只能用于一个高度侵扰动过程。 另一方面, 对于非极偏差非线性部分差异方方程式( SPDEs) 的问题, 解决一个基于时间基数的一阶- 美元降序模型( SPDBs) 的计算成本模型( ROM) 的计算成本。 在两个直径直的 SPDE 右侧面, 我们的算法方法可以构建一个低位直线直线直线直线直线直线直线直线直线直线直径直径直径直径直径直径直径直线直径直径直径直径直径直径直径直径直直径直径直径直径直直直直直径。 。,,, 平平平平平平平方方方方方算算算法计算法计算法在一个直直直直直直直直径直径直直直直直直直直直直直直直直直直直直直直直到直直直直直直直直直直到直径直径直径直径直到直到直到整个直直到直到直到直直直直到整个直直直直直直直直直到直至直至直至直直直直到直直直直到直直直直直直直到直至直至直至直至直至直直直直直至直至直至直直直至直至直至直至直至直至直至直直直直直直直直直直直直直直直直直直直直直直方方方方方方方方方形直方形直方形直方形直方形直方方方方方方方方方方直直直直

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年1月27日
Arxiv
0+阅读 · 2023年1月26日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员