This paper presents a stochastic differential equation (SDE) approach for general-purpose image restoration. The key construction consists in a mean-reverting SDE that transforms a high-quality image into a degraded counterpart as a mean state with fixed Gaussian noise. Then, by simulating the corresponding reverse-time SDE, we are able to restore the origin of the low-quality image without relying on any task-specific prior knowledge. Crucially, the proposed mean-reverting SDE has a closed-form solution, allowing us to compute the ground truth time-dependent score and learn it with a neural network. Moreover, we propose a maximum likelihood objective to learn an optimal reverse trajectory which stabilizes the training and improves the restoration results. In the experiments, we show that our proposed method achieves highly competitive performance in quantitative comparisons on image deraining, deblurring, and denoising, setting a new state-of-the-art on two deraining datasets. Finally, the general applicability of our approach is further demonstrated via qualitative results on image super-resolution, inpainting, and dehazing. Code is available at \url{https://github.com/Algolzw/image-restoration-sde}.
翻译:本文展示了通用图像恢复的随机差分方程( SDE) 。 关键构建方式是平均反转 SDE, 将高品质图像转换成退化的对应方, 作为固定高斯噪音的平均值。 然后, 通过模拟相应的反向时间 SDE, 我们就可以恢复低品质图像的起源, 而不依赖任何特定任务之前的知识。 关键是, 拟议的中位反转 SDE 具有封闭式解决方案, 使我们能够计算地面真实分数, 并用神经网络来了解它。 此外, 我们提出了一个最大可能性的目标, 学习一种最佳反向轨迹, 稳定培训, 并改进恢复结果。 在实验中, 我们展示了我们拟议方法在图像脱线、 脱线、 脱线、 脱线、 设置两个脱线数据集的新状态上具有高度竞争力。 最后, 我们方法的普遍适用性通过图像超分辨率、 插入、 和 dephurz/ dehazing { 代码 得到进一步的证明。