The brain is probably the most complex organ in the human body. To understand processes such as learning or healing after brain lesions, we need suitable tools for brain simulations. The Model of Structural Plasticity offers a solution to that problem. It provides a way to model the brain bottom-up by specifying the behavior of the neurons and using structural plasticity to form the synapses. However, its original formulation involves a pairwise evaluation of attraction kernels, which drastically limits scalability. While this complexity has recently been decreased to $O(n\cdot \log^2 n)$ after reformulating the task as a variant of an n-body problem and solving it using an adapted version of the Barnes-Hut approximation, we propose an even faster approximation based on the fast multipole method (FMM). The fast multipole method was initially introduced to solve pairwise interactions in linear time. Our adaptation achieves this time complexity, and it is also faster in practice than the previous approximation.
翻译:大脑可能是人体中最复杂的器官。 要理解诸如脑损伤后学习或康复等过程, 我们需要合适的大脑模拟工具。 结构可塑性模型为这一问题提供了一个解决方案。 它提供了一种模式, 通过指定神经元的行为和使用结构可塑性来形成突触来模拟大脑自下而上。 但是, 它的原始配方包含对吸引内核的双向评估, 这极大地限制了可缩放性。 虽然这种复杂性最近已经下降到$O(n\cdot\log ⁇ 2 n) $( $) 。 在将任务重新定位为正体问题的变体并使用经调整的Barnes-Hut 近似法( FMM ) 加以解决之后, 我们提出一个基于快速多极法( FMM) 的更快的近似法。 快速多极法最初是用来在线性时间内解析对对立的相互作用。 我们的适应方法实现了这个时间的复杂性, 并且在实践中也比以前的近。