In this paper, we introduce a novel methodology to model rating transitions with a stochastic process. To introduce stochastic processes, whose values are valid rating matrices, we noticed the geometric properties of stochastic matrices and its link to matrix Lie groups. We give a gentle introduction to this topic and demonstrate how It\^o-SDEs in R will generate the desired model for rating transitions. To calibrate the rating model to historical data, we use a Deep-Neural-Network (DNN) called TimeGAN to learn the features of a time series of historical rating matrices. Then, we use this DNN to generate synthetic rating transition matrices. Afterwards, we fit the moments of the generated rating matrices and the rating process at specific time points, which results in a good fit. After calibration, we discuss the quality of the calibrated rating transition process by examining some properties that a time series of rating matrices should satisfy, and we will see that this geometric approach works very well.
翻译:在本文中,我们引入了一种新的方法来模拟带有随机过程的评级过渡。为了引入具有有效评级矩阵值的随机过程,我们注意到了随机矩阵的几何特性及其与矩阵 Lie 群的链接。我们温柔地介绍了这个专题,并展示了R 中的 It ⁇ o-SDEs 将如何产生理想的评级过渡模式。为了将评级模式与历史数据相校准,我们使用了称为TimeGAN的深神经网络(DNN) 来学习历史评级矩阵时间序列的特征。然后,我们用这个 DNN 来生成合成评级过渡矩阵。随后,我们将生成的评级矩阵和评级进程的时间点与具体时间点相匹配,结果很合适。校准后,我们通过检查一个时间序列的评级矩阵应该满足的一些属性来讨论校准评级过渡过程的质量,我们将会看到这一几何方法效果很好。