It is confirmed in this work that the graph isomorphism can be tested in polynomial time, which resolves a longstanding problem in the theory of computation. The contributions are in three phases as follows. 1. A description graph $\tilde{A}$ to a given graph $A$ is introduced so that labels to vertices and edges of $\tilde{A}$ indicate the identical or different amounts of walks of any sort in any length between vertices in $A$. Three processes are then developed to obtain description graphs. They reveal relations among matrix power, spectral decomposition and adjoint matrices, which is of independent interest. 2. We show that the stabilization of description graphs can be implemented via matrix-power stabilization, a new approach to distinguish vertices and edges to graphs. The approach is proven to be equivalent in the partition of vertices to Weisfeiler-Lehman (WL for short) process. The specific Square-and-Substitution (SaS) process is more succinct than WL process. The vertex partitions to our stable graphs are proven to be \emph{strongly} equitable partitions, which is important in the proofs of our main conclusion. Some properties on stable graphs are also explored. 3. A class of graphs named binding graphs is proposed and proven to be graph-isomorphism complete. The vertex partition to the stable graph of a binding graph is the automorphism partition, which allows us to confirm graph-isomorphism problem is in complexity class $\mathtt{P}$. Since the binding graph to a graph is so simple in construction, our approach can be readily applied in practice.


翻译:这项工作证实, 图形是形态化的, 可以用多面性时间来测试, 从而解决计算理论中长期存在的问题。 贡献分为以下三个阶段。 1. 引入给给定图形$A$的描述图形$\ tilde{ A}$A$ 美元, 以便给顶端和边缘贴上标签 $\ tilde{ A} 美元 美元 表示任何长于任何长度的顶端。 然后开发三个进程, 以获取描述性图表。 它们显示矩阵动力、 光谱分解和 联合矩阵之间的关系, 这是独立感兴趣的 。 我们显示, 描述性图表的稳定性可以通过矩阵稳定化执行, 新的方法可以区分顶端和图形的边缘。 这个方法被证明相当于向 Weisfeiler- Lehman (WL 用于短期) 的顶端。 特定的平面和 平面图解( Sa) 进程比 WL 进程更简洁化 。 某些平面性分布 也是我们图表中稳定的稳定性 。 的稳定性 的稳定性 。 开始 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月4日
Arxiv
54+阅读 · 2022年1月1日
Arxiv
15+阅读 · 2021年6月27日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员