Existing studies in few-shot semantic segmentation only focus on mining the target object information, however, often are hard to tell ambiguous regions, especially in non-target regions, which include background (BG) and Distracting Objects (DOs). To alleviate this problem, we propose a novel framework, namely Non-Target Region Eliminating (NTRE) network, to explicitly mine and eliminate BG and DO regions in the query. First, a BG Mining Module (BGMM) is proposed to extract the BG region via learning a general BG prototype. To this end, we design a BG loss to supervise the learning of BGMM only using the known target object segmentation ground truth. Then, a BG Eliminating Module and a DO Eliminating Module are proposed to successively filter out the BG and DO information from the query feature, based on which we can obtain a BG and DO-free target object segmentation result. Furthermore, we propose a prototypical contrastive learning algorithm to improve the model ability of distinguishing the target object from DOs. Extensive experiments on both PASCAL-5i and COCO-20i datasets show that our approach is effective despite its simplicity.
翻译:然而,通常很难告诉模糊的区域,特别是在非目标区域,包括背景(BG)和易碎物体(DOs)。为了缓解这一问题,我们提议了一个新的框架,即非目标区域消除(NTRE)网络,以在查询中明确采矿和消除(NTRE)和DO区域。首先,提议了一个BG采矿模块(BGMM),以通过学习通用BG原型来提取BG区域。为此目的,我们设计了一个BG损失,以监督BGMM的学习,但只有使用已知的目标目标目标目标分割地面真相。然后,我们提议一个BG消除模块和DO消除模块,从查询特征中连续过滤BG和DO信息,在此基础上我们可以获得BG和DO无目标物体分割结果。此外,我们提议了一种典型的对比学习算法,以提高将目标对象与DOs区分的模型能力。关于PSCAL-5i和CO-20i的大规模实验表明,尽管我们的方法很简单,但我们的方法是有效的。