Registering urban point clouds is a quite challenging task due to the large-scale, noise and data incompleteness of LiDAR scanning data. In this paper, we propose SARNet, a novel semantic augmented registration network aimed at achieving efficient registration of urban point clouds at city scale. Different from previous methods that construct correspondences only in the point-level space, our approach fully exploits semantic features as assistance to improve registration accuracy. Specifically, we extract per-point semantic labels with advanced semantic segmentation networks and build a prior semantic part-to-part correspondence. Then we incorporate the semantic information into a learning-based registration pipeline, consisting of three core modules: a semantic-based farthest point sampling module to efficiently filter out outliers and dynamic objects; a semantic-augmented feature extraction module for learning more discriminative point descriptors; a semantic-refined transformation estimation module that utilizes prior semantic matching as a mask to refine point correspondences by reducing false matching for better convergence. We evaluate the proposed SARNet extensively by using real-world data from large regions of urban scenes and comparing it with alternative methods. The code is available at https://github.com/WinterCodeForEverything/SARNet.
翻译:由于LiDAR扫描数据的大规模、噪音和数据不完整,登记城市点云是一项相当艰巨的任务。在本文件中,我们提议SARNet,这是一个新型的语义强化登记网,目的是实现城市点云的高效登记。不同于以往仅在点空间建立通信的方法,我们的方法充分利用了语义特征来帮助提高登记准确性。具体地说,我们利用先进的语义分解网络来提取点语义标签,并建立一个先前的语义互换通信系统。然后,我们将语义信息纳入一个基于学习的注册管道,由三个核心模块组成:一个基于语义的最远点的取样模块,以高效地过滤外源和动态物体;一个语义强化特征提取模块,以学习更具有歧视性的点描述器;一个语义再精确的转换估计模块,利用先前的语义匹配作为掩码,通过减少虚假的匹配来改进点对应,更好地融合。我们通过使用真实世界范围的远点代码对拟议的SARNet进行广泛评估,从大区域过滤外端和动态天体/网络的数据进行相互比较。