Cellular sheaves equip graphs with a "geometrical" structure by assigning vector spaces and linear maps to nodes and edges. Graph Neural Networks (GNNs) implicitly assume a graph with a trivial underlying sheaf. This choice is reflected in the structure of the graph Laplacian operator, the properties of the associated diffusion equation, and the characteristics of the convolutional models that discretise this equation. In this paper, we use cellular sheaf theory to show that the underlying geometry of the graph is deeply linked with the performance of GNNs in heterophilic settings and their oversmoothing behaviour. By considering a hierarchy of increasingly general sheaves, we study how the ability of the sheaf diffusion process to achieve linear separation of the classes in the infinite time limit expands. At the same time, we prove that when the sheaf is non-trivial, discretised parametric diffusion processes have greater control than GNNs over their asymptotic behaviour. On the practical side, we study how sheaves can be learned from data. The resulting sheaf diffusion models have many desirable properties that address the limitations of classical graph diffusion equations (and corresponding GNN models) and obtain competitive results in heterophilic settings. Overall, our work provides new connections between GNNs and algebraic topology and would be of interest to both fields.
翻译:在本文中, 我们使用细胞纤维理论来显示图形的基本几何与GNN在异性医学环境中的性能及其超momother行为密切相连。 图形神经网络( GNNNS) 暗含地假设一个带有一个小小的外壳的图形。 这个选择反映在 Laplacian 操作器的结构中, 相关的扩散方程的特性, 以及分离这个方程的进化模型的特性。 在本文中, 我们使用细胞纤维纤维模型理论来显示, 图形的基本几何与GNNS 在异性医学环境中的性能及其过度移动行为的性能有密切的联系。 通过考虑一个越来越普通的外壳层的等级, 我们研究Sanaf 扩散进程在无限时间范围内实现各类的线性分离的能力。 同时, 我们证明, 当其非边际、 离异的对等式扩散过程比 GNNP 对其无症状行为有更大的控制。 在实际的方面, 我们研究如何从数据中学习 sheaves 从数据中学习 。 导致的Saf 扩散模型扩散模型和 GNPI 等式之间具有许多理想的顶部的模型 和 GNPL 等式模型的顶部的特性。