This paper presents an optimal motion planning framework to generate versatile energy-optimal quadrupedal jumping motions automatically (e.g., flips, spin). The jumping motions via the centroidal dynamics are formulated as a 12-dimensional black-box optimization problem subject to the robot kino-dynamic constraints. Gradient-based approaches offer great success in addressing trajectory optimization (TO), yet, prior knowledge (e.g., reference motion, contact schedule) is required and results in sub-optimal solutions. The new proposed framework first employed a heuristics-based optimization method to avoid these problems. Moreover, a prioritization fitness function is created for heuristics-based algorithms in robot ground reaction force (GRF) planning, enhancing convergence and searching performance considerably. Since heuristics-based algorithms often require significant time, motions are planned offline and stored as a pre-motion library. A selector is designed to automatically choose motions with user-specified or perception information as input. The proposed framework has been successfully validated only with a simple continuously tracking PD controller in an open-source Mini-Cheetah by several challenging jumping motions, including jumping over a window-shaped obstacle with 30 cm height and left-flipping over a rectangle obstacle with 27 cm height.
翻译:本文提出了一个最佳运动规划框架, 以自动生成多功能、 最佳能源、 四倍跳跃运动( 例如, 翻转、 旋转) 。 通过环球动力跳动运动被设计成一个12维黑盒优化问题, 受到机器人的动态动力制约。 基于渐变的方法在处理轨迹优化( TO) 方面非常成功, 然而, 需要事先的知识( 如参考动作、 联系时间表), 并导致亚最佳解决方案 。 新的拟议框架首先使用基于超常的优化方法来避免这些问题 。 此外, 机器人地面反应部队( GRF) 规划、 增强趋同和 搜索性能的超强性能算法 设定了优先健身功能 。 由于基于超常的算法通常需要大量的时间, 计划运动, 并存储为移动前图书馆 。 选择器旨在自动选择使用用户指定或感知信息作为投入的动作 。 拟议的框架仅以简单的持续跟踪 PD 控制器来避免这些问题 。 此外, 以数个具有挑战性障碍的立式 30 高 的左方 障碍 跳式 。