项目名称: 浅海声场时频特性与warping变换方法应用研究

项目编号: No.11474073

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 朴胜春

作者单位: 哈尔滨工程大学

项目金额: 90万元

中文摘要: 宽带声信号在水声波导中的频散现象是水声领域的一个重点研究课题。近来一种新的信号时频分析方法,warping变换方法,被用来提高水声信号时频分析的分辨力。提高信号时频分析中的分辨能力,将有助于提取信号中所包含的环境或目标参数信息。本项目将结合我国近海水声环境的特点,对浅海水声波导频散特性和warping变换应用方法进行深入研究,以将其推广到非水平分层介质浅海环境中。研究首先依据绝热简正波理论建立波导简正波群速度模型和低频声矢量场信号波形预报算法;其次对波导频散特性和warping变换的简正波分离能力进行仿真研究,并尝试建立优化的warping变换算法;然后在有效提取声压与质点振速信号时频特征参数的基础上,构造水中目标定位和环境参数反演的有效算法;此外,项目还将通过实验研究对理论模型和信号处理算法进行检验。项目研究将侧重于对声矢量信号的处理分析和信号处理新原理、新方法的探索。

中文关键词: 水声信号处理;水声信道;水下目标

英文摘要: The investigation of dispersion phenomena of broadband sound pulse propagation in shallow water is an important topic in underwater acoustics. Recently, a new time-frequency analysis method, Warping transform method, is used to improve the resolution of the time-frequency distribution of the measured acoustic data. And such refined knowledge of time-frequency distribution facilitates efforts to extract environmental parameters or target parameters estimation. According to the ocean environmental characteristics in our country, the waveguide dispersion characteristics in shallow water and application of warping transform method will be researched in this project, in order to apply this method to the case of modal propagation in a range-dependent shallow water environment. First, the adiabatic approximation normal mode method is used to build the theoretical model of normal mode group speed in weak range-dependent environment and predict the received acoustic vector signal temporal waveform for low frequency pulse signal in the waveguide. Second, the waveguide dispersion characteristics and the ability of the normal mode separation for warping transform method will be researched by numerical simulation and some optimal algorithm for warping transform will be established. Then, the new warping transform algorithm will be applied to extract the time-frequency distribution characteristic parameters for the sound pressure signals and particle velocity signals in the shallow water. And signal processing algorithms will be researched for target localization and ocean environmental parameters inversion. Experimental research will also be done in this project to validate the theoretical research and check the performance for different signal processing algorithms. The research of this project will be particularly emphasized to deal with acoustic vector field signal and explore new underwater acoustic signal processing method.

英文关键词: Underwater acoustic signal processing;Underwater sound channel;Underwater target

成为VIP会员查看完整内容
0

相关内容

【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
92+阅读 · 2022年4月17日
【中科大】数值计算方法扩充课程,116页pdf
专知会员服务
82+阅读 · 2022年1月7日
专知会员服务
14+阅读 · 2021年8月29日
专知会员服务
32+阅读 · 2021年7月25日
专知会员服务
41+阅读 · 2021年7月5日
专知会员服务
19+阅读 · 2021年5月16日
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
78+阅读 · 2021年1月30日
一文带你了解语音信号处理技术
PaperWeekly
9+阅读 · 2022年1月26日
论文浅尝 | 基于正交普鲁克分析的高效知识图嵌入学习
【AAAI2021】对比聚类,Contrastive Clustering
专知
25+阅读 · 2021年1月30日
用于语音识别的数据增强
AI研习社
24+阅读 · 2019年6月5日
立体匹配技术简介
计算机视觉life
28+阅读 · 2019年4月22日
近期声学领域前沿论文(No. 3)
深度学习每日摘要
24+阅读 · 2019年3月31日
基于Lattice LSTM的命名实体识别
微信AI
47+阅读 · 2018年10月19日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
OCR技术浅析
机器学习研究会
40+阅读 · 2017年12月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
小贴士
相关资讯
一文带你了解语音信号处理技术
PaperWeekly
9+阅读 · 2022年1月26日
论文浅尝 | 基于正交普鲁克分析的高效知识图嵌入学习
【AAAI2021】对比聚类,Contrastive Clustering
专知
25+阅读 · 2021年1月30日
用于语音识别的数据增强
AI研习社
24+阅读 · 2019年6月5日
立体匹配技术简介
计算机视觉life
28+阅读 · 2019年4月22日
近期声学领域前沿论文(No. 3)
深度学习每日摘要
24+阅读 · 2019年3月31日
基于Lattice LSTM的命名实体识别
微信AI
47+阅读 · 2018年10月19日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
OCR技术浅析
机器学习研究会
40+阅读 · 2017年12月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员