Multi-robot simultaneous localization and mapping (SLAM) enables a robot team to achieve coordinated tasks relying on a common map. However, centralized processing of robot observations is undesirable because it creates a single point of failure and requires pre-existing infrastructure and significant multi-hop communication throughput. This paper formulates multi-robot object SLAM as a variational inference problem over a communication graph. We impose a consensus constraint on the objects maintained by different nodes to ensure agreement on a common map. To solve the problem, we develop a distributed mirror descent algorithm with a regularization term enforcing consensus. Using Gaussian distributions in the algorithm, we derive a distributed multi-state constraint Kalman filter (MSCKF) for multi-robot object SLAM. Experiments on real and simulated data show that our method improves the trajectory and object estimates, compared to individual-robot SLAM, while achieving better scaling to large robot teams, compared to centralized multi-robot SLAM. Code is available at https://github.com/intrepidChw/distributed_msckf.
翻译:暂无翻译