Large-scale linear models are ubiquitous throughout machine learning, with contemporary application as surrogate models for neural network uncertainty quantification; that is, the linearised Laplace method. Alas, the computational cost associated with Bayesian linear models constrains this method's application to small networks, small output spaces and small datasets. We address this limitation by introducing a scalable sample-based Bayesian inference method for conjugate Gaussian multi-output linear models, together with a matching method for hyperparameter (regularisation) selection. Furthermore, we use a classic feature normalisation method (the g-prior) to resolve a previously highlighted pathology of the linearised Laplace method. Together, these contributions allow us to perform linearised neural network inference with ResNet-18 on CIFAR100 (11M parameters, 100 output dimensions x 50k datapoints) and with a U-Net on a high-resolution tomographic reconstruction task (2M parameters, 251k output dimensions).
翻译:大型线性模型在整个机器学习过程中无处不在,当代应用是神经网络不确定性量化的替代模型,即线性拉比法。唉,贝叶斯线性模型的计算成本限制了这一方法对小型网络、小型产出空间和小型数据集的应用。我们通过采用可扩缩的基于样本的贝叶斯式推断方法来解决这一局限性,即对高斯多输出线性模型采用可缩放的贝叶斯式模型,同时对超光谱仪(常规化)的选择采用匹配方法。此外,我们使用经典特征正常化方法(主要方法)来解决以前突出的线性拉比法的病理学。这些贡献共同使我们能够用ResNet-18对CIFAR100(11M参数,100个输出维x50k数据点)进行线性神经网络推断,并用U-Net进行高分辨率的地形重建任务(2M参数,251k输出维)。</s>