We present a data-driven approach to mathematically model physical systems whose governing partial differential equations are unknown, by learning their associated Green's function. The subject systems are observed by collecting input-output pairs of system responses under excitations drawn from a Gaussian process. Two methods are proposed to learn the Green's function. In the first method, we use the proper orthogonal decomposition (POD) modes of the system as a surrogate for the eigenvectors of the Green's function, and subsequently fit the eigenvalues, using data. In the second, we employ a generalization of the randomized singular value decomposition (SVD) to operators, in order to construct a low-rank approximation to the Green's function. Then, we propose a manifold interpolation scheme, for use in an offline-online setting, where offline excitation-response data, taken at specific model parameter instances, are compressed into empirical eigenmodes. These eigenmodes are subsequently used within a manifold interpolation scheme, to uncover other suitable eigenmodes at unseen model parameters. The approximation and interpolation numerical techniques are demonstrated on several examples in one and two dimensions.


翻译:在数学模型物理系统中,我们通过学习与Green相关的功能,对指导部分差异方程式的不为人知的物理系统进行了数据驱动的数学模型处理。通过从高斯进程提取的引力,通过收集输入-输出对系统响应,对主题系统进行观察。提出了两种方法来学习Green的功能。在第一个方法中,我们使用系统的正正正正正正正正正正正方形分解(POD)模式,作为绿色功能的二次元体的代金,并随后使用数据来适应二次元值。在第二个方法中,我们使用随机特异值解构(SVD)对操作者进行一般化,以构建绿色功能的低端近似值。然后,我们提出一个多重的内向机制,用于离线设置,在特定的模型参数下,离线解析解析数据被压缩为经验性电子元模型。这些电子元模型随后在一个多维的内被使用,用来在多个不同的内位图中发现其他适当的数字模型和数字参数。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
29+阅读 · 2021年11月2日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
65+阅读 · 2021年6月18日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员